A Quadratic Equation Application

Find the dimensions of a STOP sign with a total area of 900 in^2 . Each edge is equal. We denote the edge by S. x denotes the horizontal or vertical distance cut out of each corner. Note: $x \neq S$. *Why?* Recognize that each corner is a right triangle and therefore must obey the Pythagorean Theorem. $x^2 + x^2 = S^2$. This leads to $2x^2 = S^2$ Why? Solving for S gives us 900 sq-in $S = x\sqrt{2}$. Why? We can now find x by solving the following equation: (4-triangles, 4-rectangles and one square in the center = $900in^2$) turn the sentence into an equation substitute out S to get only 'x' $4x^2 + 4\sqrt{2} x^2 = 900$ combine like terms and then factor x^2 $(4+4\sqrt{2})x^2 = 900$ divide both sides by $(4 + 4\sqrt{2})$ $x^2 = \frac{900}{4 + 4\sqrt{2}} x = \sqrt{\frac{900}{4 + 4\sqrt{2}}}$ simplify $S = \sqrt{2} \sqrt{\frac{225}{1+\sqrt{2}}} \rightarrow$ $S = \gamma$ substitute back to get S, $S \approx 13.65''$

Another approach to solving the above problem would be to begin with the circumscribing square and subtract the 4 corner triangles to obtain the 900 sq-in of area: (*surrounding square* - 4-*triangles* $= 900in^2$)

$$(x + S + x)^2 - 4[(\frac{1}{2})x^2] = 900$$
 S = $\sqrt{2}$ x and simplifying yields:
 $(2x + \sqrt{2} x)^2 - 2x^2 = 900$

This requires we multiply (expression) × (expression) which we shall discuss in the next section. There are numerous situations where we might want to multiply a pair of expressions. The last example presented us with the alternate problem formation leading to the need to solve $(2x + \sqrt{2}x)^2 - 2x^2 = 900$.

Although we can approximate $\sqrt{2}$ and combine the two terms here we shall develop a general process for multiplying (expression) × (expression). This will allow us to solve a wider array of problems.