1) Solve for $\mathrm{y}: \mathrm{A}=\frac{\mathrm{x}+\mathrm{y}}{2} \cdot \mathrm{~h} \quad$ Draw a graph of the case when $\mathrm{A}=24, \mathrm{~h}=3$.

2) Find the slope and \mathbf{y}-intercept then give the equation for each line shown. B is horizontal.

| Line | Slope | y-intercept | Equation |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A | | | |

3)

Find the equation for the following three lines.
(a) Line A passes through: $(-2,3) \&(2,5)$
(b) Line B passes through: $(1,7) \&(5,-1)$
(c) Line C passes through: $(-5,4) \&(7,0)$
4) Simplify to slope intercept form and graph. $\frac{7}{4}+\frac{3 \mathrm{x}}{5}=\frac{2 \mathrm{x}+5 \mathrm{y}}{20}+2$

5) Give the slope and y-intercept of each line.
(a) $y=\frac{-3 x}{5}+6$
(b) $\mathrm{y}=\frac{5 \mathrm{x}-12}{2}$
(c) $y=4-x$
(d) $3 y-4 x=24$
6) Convert to Slope-Intercept form:
(a) $4 x+3 y=12$
(b) $7 x-5 y=25$
7) Convert to Standard-Integer form: (a) $y=(3 / 4) x+8$
(b) $\mathrm{y}=(-5 / 8) \mathrm{x}-12$
8) Find both intercepts:
(a) $4 x+3 y=24$
(b) $y=(5 / 8) x-20$
9) Give the equations for the vertical and horizontal lines that cross at $(5,7)$.
10) Show that $\mathrm{x}+\mathrm{y}=0$ and $\mathrm{x}-\mathrm{y}=0$ intersect perpendicularly at the origin.
11) Determine the x-scale and y-scale then graph each equation in its proscribed region.

Determine equations for the following cases. Write your answers in Slope-Intercept form.
12) A line passing through $(2.4,1.9) \&(-5.6,9.5)$.
13) A line passing through $(236,519) \&(-504,911)$.
14) A line crossing the x-axis at -12 and the y-axis at -6 .
15) A line passing through $(-10,12)$ and parallel to $8 x-12 y=15$.
16) A line passing through $(-6,2)$ and perpendicular to $y=(2 / 3) x+6$.

Find the equation representing these lines in Slope Intercept form.
17)

Bonus

Give the equations of the lines that would make your initials in BLロCK letters. Enter them into your calculator, graph and show me the result.

