In a linear equation

- Constant terms are possible.
- All variable terms reduce to (coefficient) \times (variable).
- All variables are to the first power.
- No mixed products of variables are allowed.
- No division by variables are allowed.

Examples of Terms

3	2.54	π	$\sqrt{2}$	10^{-4}	a	b	are typical constant terms
$3 x$	$2.7 x$	$a x$	$\sqrt{2} x$	$(a+b) x$	$(5+a) x$	$a^{2} x$	are typical linear terms
$5 x^{2}$	$3 \frac{1}{x}$	$6 \sqrt{x}$	$x y$	$\frac{5 x}{6 y}$	$3 x(x+1)$	$\frac{x}{x+1}$	are typical non-linear terms

General Process

Linear equations use a routine step-by-step solution process. Any adjustment to the equation is legitimate as long as it occurs equally on both sides of the equation. As you might expect, some adjustments are more beneficial than others. That is, there is a preferred sequence of manipulations and if we follow the preferred steps, the equation simplifies nicely to $x=$ "solution". This x-value (solution) must make our original equation true. The solution should be substituted into the original equation to double check the solution.

An Efficient Scheme for Solving Linear Equations

(1) Change Subtractions to Additions. e.g. $10-2 x=10+(-2 x)$
(2) Remove all parentheses. (apply Distributive Property)
(3) Mark each Term with a bracket. e.g. [term] + [term]
(4) Remove all fractions. (multiply all terms by LCD then cancel and simplify)
(5) Shift variable term(s) to one side by adding or subtracting terms.
(6) Shift everything else to the other side by adding or subtracting terms.
(7) If necessary write variable term(s) as (coefficient) • (variable). (Distributive Law)

$$
\text { i.e. } \sqrt{2} x+4 x=(\sqrt{2}+4) x \text { or } \pi x+a x=(\pi+a) x
$$

(8) Divide both sides by the variable's coefficient.
(9) Check the answer by substituting solution into the original equation.

Example 1: Solve $2 x-4 \frac{(3 x-5)}{3}=\frac{4 x}{5}+\frac{41}{3}$
(1) $2 x+(-4) \frac{(3 x+(-5))}{3}=\frac{4 x}{5}+\frac{41}{3} \quad$ change subtraction to addition
(2) $2 x+\frac{(-12 x)+20}{3}=\frac{4 x}{5}+\frac{41}{3}$
(3)

$$
[2 x]+\left[\frac{(-12 x)+20}{3}\right]=\left[\frac{4 x}{5}\right]+\left[\frac{41}{3}\right]
$$

distribute
(4) $15[2 x]+\frac{15}{1}\left[\frac{(-12 x)+20}{3}\right]=\frac{15}{1}\left[\frac{4 x}{5}\right]+\frac{15}{1}\left[\frac{41}{3}\right]$
bracket each term
(4) $15[2 x]+5[(-12 x)+20]=3[4 x]+5[41]$
(4)

$$
\begin{gathered}
30 x+(-60 x)+100=12 x+205 \\
-30 x+100=12 x+205
\end{gathered}
$$

(5)

$$
+30 x=+30 x
$$

multiply every term by LCD

$$
100=42 x+205
$$

$$
\underline{-205}=-205
$$

$$
-105=42 x
$$

(8)

$$
x=\frac{-105}{42}=\frac{-5}{2}
$$

$$
\begin{aligned}
& \text { cancel } \\
& \text { simplify } \\
& \text { simplify }
\end{aligned}
$$

(6)
(9)

Check by TI \checkmark

divide out x 's coefficient

so, $x=-2.5$
Example 2: Solve $\frac{a x+1}{b x+1}=1$

(3)	$\left[\frac{a x+1}{b x+1}\right]=[2]$	bracket terms
(4)	$\left[\frac{b x+1}{1}\right]\left[\frac{a x+1}{b x+1}\right]=\left[\frac{b x+1}{1}\right][2]$	multiply every term by LCD
(4)	$a x+1=[b x+1][2]$	cancel
(4)	$a x+1=2 b x+2$	simplify
(5)	$-2 b x=-2 b x$	shift variable terms to one side
	$a x-2 b x+1=2$	
(6)	$\underline{-1}=-1$	shift non-variables to other side
	$a x-2 b x=1$	
(7)	$(a-2 b) x=1$	write as (coefficient) \times (variable)
(8)	$x=\frac{1}{a-2 b}$	divide out x 's coefficient
(9)	Checking by substitution is difficult	so, $x=\frac{1}{a-2 b}$

Solve for x. Where reasonable, check your answers. Name

1) $-(1-x)-(2-x)-(3-x)-(x-6)=0$
2) $x-2(1-x)+5=0$
3) $6-(x+2)=-3$
4) $-2 x=1-(2 x+3)$
5) $6-2(x-3)+5=15$
6) $14=5-3(2 x-3)$
7) $2(3-x)+4=8-3(2 x-5)$
8) $4 x-3(7-3 x)=2 x+4(5-2 x)$
9) $2.8 x+1.7=2.5(8.2 x+5.4)$
10) $1.7 x-0.2(2-5 x)=0.9(3 x+2)-2.2$
11) $3-\frac{4(x-5)}{3}+\frac{x}{2}=\frac{3(x+1)}{2}$
12) $\frac{7}{2}-2(3 x-1)=\frac{3(x-9)}{3}$
13) $2(x-3)-(2 x+4)=-6 x$
14) $32 / 3 \cdot x+2 \frac{5}{8}=4 \frac{1}{2} \cdot x-6 \frac{3}{4}$
15) $\frac{4(x+1)}{3}=\frac{2}{3}-5 \frac{2 x+3}{2}$
16) $6-\frac{2(3 x-1)}{5}+6 x=15 x-\frac{5(3 x+2)}{4}$
17) Solve for p

$$
3 \frac{3}{4} \cdot p+2 \frac{5}{8}=4 \frac{1}{2} \cdot p-6^{2} / 3
$$

21) Solve for r

$$
S=2 \pi r+r h
$$

23) Solve for Q

$$
\frac{Q-k}{Q+k}=7
$$

16) $10-\frac{3 x-7}{5}=4$
17) Solve for a

$$
a+1=\frac{r-3 a}{2 r}
$$

20) Solve for L

$$
F=\frac{1}{2} \cdot \frac{W}{L}+1
$$

22) Solve for 9

$$
3 g+w g=1
$$

24) Solve for w

$$
a w+b=w+d
$$

1)	$x=0$	$2)$	$x=-1$	$3)$	$x=7$	$4)$	no solution
5$)$	$x=1$	$6)$	$x=0$	$7)$	$x=13 / 4$	$8)$	$x=41 / 19$
9$)$	$x=-2 / 3 \approx 0.67$	$10)$	all real numbers	$11)$	$x=7 / 2$	$12)$	$x=29 / 14$
13$)$	$x=5 / 3$	$14)$	$x=\frac{45}{4}=11 \frac{1}{4}=11.25$	$15)$	$X=-49 / 38$	$16)$	$x=37 / 3$
17$)$	$x=178 / 129$	$18)$	$a=\frac{-r}{2 r+3}$	$19)$	$P=\frac{223}{18}=127 / 18$	$20)$	$L=\frac{W}{2 F-2}$
21$)$	$r=\frac{S}{2 \pi+h}$	$22)$	$g=\frac{1}{3+w}$	$23)$	$Q=-4 k / 3$	$24)$	$w=\frac{d-b}{a-1}$

25) $\frac{3-x}{2}+\frac{2}{3}=1-\frac{3 \cdot(2 x-5)}{2}$
26) Solve for x

$$
a x+3=b x+9
$$

29) Solve for H

$$
20=\pi H R^{2}
$$

31) Solve for x

$$
a x+b x+c x+5 x-10=7 x+2
$$

26) $\frac{4 x}{3}-3 \cdot \frac{7-3 x}{2}=\frac{2 x}{3}+4(5-2 x)$
27) Solve for y

$$
10-\frac{2(2 y-5)}{3}=5 \frac{x+y}{2}
$$

30) Solve for x

$$
2 a x+3=5(a x-3 b)
$$

32) Solve for x

$$
\left(\frac{1}{2}\right) x+\left(\frac{3}{4}\right) x+a x=\left(\frac{5}{8}\right) x+10
$$

25)		$26)$		$27)$		$28)$	
29$)$		$30)$		$31)$		$32)$	

