1) Eddy can buy Q-bolts for $\$ 2.30$ each with S\&H of $\$ 10.95$ or he can buy Q-bolts for $\$ 1.95$ each with S\&H of $\$ 15.00$. For what value of x are the choices approximately equal?
2) The formula for a conic frustum is $V=1 / 3 \pi H\left(R^{2}+R r+r^{2}\right)$ Solve this equation for H.
3) The formula for determining the size when two ducts ($a \& b$) are combined is $F=\frac{a b}{a+b}$. Solve this equation for ' a '. Problem (3a) $2 \frac{1}{4}$ STO® $A, 4 \frac{3}{8}$ STO® B: Compute F as a fraction.
4) Consider: $\frac{4 x-7}{2}=10-4 \frac{4-9 x}{3}$
(a) Use STO to check if $X=4.7$ is an exact solution
(b) Solve by graphing
(c) Solve by algebra
5) $\quad 10 \mathrm{gal}$ of a special sealer is needed that is 35% hardener and 65% resin. Brand A is 25% hardener \& 75% resin while $B r a n d B$ is 50% hardener \& 50% resin. How much of each (Brand $A / B r a n d B$) must be used to make the special sealer. Let $A=$ gal of $A, B=$ gal of B. Write a 2×2 system of equations which models this scenario and then solve the problem by both addition and substitution methods.
6) A city map has a well located at its center (0,0). The map coordinates frame $[-25,25] \times[-20,20]$. Main St follows the x-axis and Union Ave follows the y-axis. (a) Pipeline A passes through the well and $(7,5)$. Give the linear equation for pipeline A. (b) Pipeline (B) passes through $(8,-15) \&(-8,-18)$. Give the linear equation for pipeline B. (c) Use your TI to find where those pipelines intersect (this is off the map). (d) Use your TI to find where pipeline B intersects Main St (this is off the map).
7) Beth decides to make aprons and sell them at the Fair. She buys a permit for $\$ 50$ and spends $\$ 150$ on her booth. It also costs her $\$ 3.70$ to make each apron. She plans to sell them for $\$ 15$ each. Let $x=$ aprons, $y=\$$.
(a) Write a linear equation for Beth's expenses (what she spends).
(b) Write a linear equation for Beth's revenues (what she receives from sales).
(c) Write a linear equation for Beth's profits (revenues - expenses).
(d) Determine how many aprons Beth must sell to breakeven.
(e) Determine how much she will earn if she sells 40 aprons.
(f) How many aprons must she sell to earn $\$ 1,500$?
8) A sensor has the flowing readings. Assuming a linear relationship, use the first two readings to find $y=m x+b$. Then determine the missing readings.

$(x) \mathrm{CO}_{2}$	(y) volts
3×10^{-2}	7.4
10^{-3}	-3.3
0	
	0
2.6	
	-0.05

9) John needs to replace his 400' of barbed wire fence with either wood fence or rabbit fence. Ideally, he would like to use wood the whole way but it costs $\$ 3.20 / \mathrm{ft}$ while the rabbit fence is only $\$ 1.87 / \mathrm{ft}$. He has a limited budget of $\$ 1,000$. Let $x=$ wood portion. Write an equation for the cost of the entire new fence. Then determine how much of each type is possible.
10) Write the result as a fraction (both improper and proper:
a) $2 \frac{5}{8} \times 3 \frac{1}{8}=$
b) $\frac{2 \frac{5}{8}-1 \frac{7}{8}}{2 \frac{5}{8}}=$
rounded to the hundredths place:
c) $\frac{3^{6 \pi-5}}{2000 \pi} \approx$
d) $\sqrt{\left.(4 \pi-5) 10^{2}-2\right)} \approx$
e) $\frac{5.8 \times 10^{6}}{7.2 \times 10^{4}} \approx$

Rewrite this expression without parentheses:

$$
\frac{2 \pi-x}{3 \pi} \cdot \frac{3}{\pi x \sqrt{2}} \quad \frac{4 \times 10^{-5}}{2 x-1} \cdot \frac{7 x-5}{2} \cdot x+1
$$

