

Narrative:
The frequency of the swing of a pendulum depends on the length of the pendulum. Letting $F=$ swings $/ \mathrm{sec}$ and $L=$ length of the pendulum we have $F=f(L)$.

Graph:

Table:

Length	Time for 5 swings	Swings/sec
0		
10 cm		
20 cm		
30 cm		
40 cm		
50 cm		
60 cm		
100 cm		
200 cm		

Algebra/Equations:
Is this a linear relationship? Why/why not?

Assuming a power function of the form $y=A\left(x^{b}\right)$ use regression to find the best fit equation.

Now, build one of your own

Narrative:	Table:

