Mth 111 Practice for Exam 1 Franz Helfenstein Name

1) Find the equation of the line that passes through $(-44,87) \&(64,27)$
2) Solve for x : $8-7 \cdot \frac{5-3 x}{2}=2-\frac{2 x}{3} \quad$ 3) Solve for y : $\frac{3 x-2 y}{5}=10-\frac{5 x-y}{4}$
3) Solve for y : $c(x+y)=a y+b$
4) Solve for $x: 2 x(x+1)=3(x+5)$
5) Which of these are functions and which are not? Explain your reply. For those which are functions, give the domain.

(a)	Absences		(c)	(d)	(f) $\int x+1, x \leq 0$
The frequency (y)	$M=1$	12		$x^{2}+y^{2}=16$	$y=\left\{\begin{array}{l}x+1, x \leq 0 \\ x-1, x \geq 0\end{array}\right.$
of each letter (x)	$\mathrm{Tu}=2$	4	-		
in the Declaration	W = 3	4			(g)
of Independence is tabulated.		5	\square	(e) $2 x+3 y=24$	$\sqrt{x+20}$
	$\mathrm{Fr}=5$	16			$f(x)=\frac{}{(x+2)(x-4)}$

7) $f(x)=\frac{5 x^{2}-x}{x-1} \quad$ Compute the following and simplify where reasonable:
(a) $f(3)=$
(b) $f(1)=$
(c) $f(0)=$
(d) $f(a+b)=$
(e) $f(x+1)=$
(f) $f\left(x^{2}\right)=$
8) A function with the number of accidents by time of day (for a specific date) is known. Let $t=$ time of day, $a=$ accidents. Which is the independent variable? How would one interpret $f(2)=5$? Which is correct: $y=f(t), y=f(t), y=f(x), a=f(t), t=f(a)$?
9)

10)

$$
y=\left\{\begin{array}{cc}
6-x, & -2 \leq x \leq 0 \\
8-2 x / 3, & 0<x<6 \\
10.5, & x=8
\end{array}\right.
$$

11) Let $f(x)=3 x^{2}, g(x)=\sqrt{x+1}$ compute and simplify:
(a) $(f g)(x)=$
(b) $f(g(x))=$
(c) the difference quotient $\frac{f(x+h)-f(x)}{h}$
12) Give the average rate of change for each of these from $x_{1}=-2$ to $x_{2}=2$
(a)

χ	Y1
-8	-16
4	. 1.8
自	4.32 .24 10.24
10	20^{1}

(b)

13) Describe the modification to $f(x)$ by $y=-2 f(x-3)+5$.
14) The pollution level is tabulated by time of day. Run the appropriate regression to determine the time of day when the pollution was likely the worst.

Time	8 am	10 am	11 am	5 pm
ppm	80	90	95	75

15) Give the inverse for each of these functions.
(a)

X	Y1
-8	- ${ }^{16}$
2	15
昌	$\begin{aligned} & 1.88 \\ & 108 \end{aligned}$

(b)

(c) $y=\frac{3 x-10}{7}$

ANSWERS

1) $y=-(5 / 9) x+563 / 9$
2) $69 / 67$
3) $y=\frac{37 x-200}{13}$
4) $y=\frac{c x-b}{a-c}$
5) $2 x^{2}-x-15=0, x=-5 / 2,3$
6) (a) Function, D : All letters of the alphabet that occur
(b) Function, $D: D:\{M, T u, W, T h, F\}$ or $\{1,2,3,4,5\}$; (c) Function, $D: D:-8 \leq x \leq 4 \cup 5$
(d) Not a Function; (e) Function, D: All Reals; (f) Not a Function
(g) Function, $D: D: x \geq-20, x \neq-2, x \neq 4 \Rightarrow x \in[-20,-2) \cup(-2,4) \cup(4, \infty)$ (interval notation) or
7)

(a) $f(3)=$	(b) $f(1)=$	(c) $f(0)=$	$(d) f(a+b)=$	$(e) f(x+1)=$	(f) $f\left(x^{2}\right)=$
21	\varnothing	0	$\frac{5(a+b)^{2}-(a+b)}{(a+b)-1}$	$\frac{5(x+1)^{2}-(x+1)}{(x+1)-1}$	$\frac{5 x^{4}-x^{2}}{x^{2}-1}$

8) Independent variable $=t, f(2)=5 \Rightarrow$ at 2 am , there were 5 accidents. $a=f(t)$.
9)

$y=\left\{\begin{array}{c}x+8,-8 \leq x<0 \\ -3 x / 2+6,0 \leq x \leq 4 \\ 5, x=5\end{array}\right.$
10)

11)
(a) $(f g)(x)=3 x^{2} \sqrt{x+1}$
(b) $f(g(x))=3(x+1)$
(c) the difference quotient $\frac{f(x+h)-f(x)}{h}=6 x+3 h$
12) (a) $m=0.08$, (b) $m=-3 / 4$, (c) $m=0$
13) Function is shifted 3 to the right, then stretched vertically by a factor of 2 , then rotated over the x axis and finally shifted up by 5 .
14) Worst pollution is at $12: 12 \mathrm{pm}$
15)
(a)

Inverse	
x	y
-0.16	-2
0	0
0.16	2
1.28	4
4.32	6
10.24	8
20	10

(b)

(c) $y^{-1}=\frac{7 x+10}{3}$

