The horizontal (or vertical) motion of a pendulum may be modeled by $x(t)=A \sin (b t+c)$. We want to understand the relation between A, b and c and the pendulum.

1) Measure out 2 m of line and start the pendulum gently swinging. Measure the time for 10 cycles and divide by 10 to get the period (T) in seconds. ($\mathrm{T}=$ time for one complete cycle) Note: the frequency is $1 / \mathrm{T}$ or $\mathrm{f}=1 / \mathrm{T}$. Why?

$$
\mathrm{T}=\ldots \mathrm{fec} \quad \mathrm{f}=\quad \text { cycles } / \mathrm{sec}
$$

2) It has long been known that a swinging pendulum's frequency depends on the length of the pendulum with $f(L)=\frac{1}{2 \pi} \sqrt{\frac{g}{L}}$ cycles/sec. Using $g=9.8 \mathrm{~m} / \sec ^{2}$ compute f and compare with your real data. using $f(L) f=$ \qquad $\mathrm{T}(\mathrm{L})=$ \qquad using $\mathrm{T}(\mathrm{L}) \mathrm{T}=$ \qquad hz
3) Explain how we determine b ? b depends on L but it is not the same as f. What is $b(L)$?
$\mathrm{b}(\mathrm{L})=$ \qquad $b(2 m)=$ \qquad
4) Suppose we start the pendulum by first moving it 20 cm off center. That is, $x(0)=20 \mathrm{~cm}$
(a) How do we determine A? What is it?
5) $\quad h$ depends on T. What is $h(T)$?
$h(T)=$ \qquad \approx \qquad
6) c depends on h . What is $\mathrm{c}(\mathrm{h})$?

$\mathrm{c}(\mathrm{h})=$ \qquad \approx
7) Now restart the pendulum by first moving it 30 cm off center. That is, $x(0)=30 \mathrm{~cm}$. After 5, 10, 15 and 20 swings, record the maximum position of the horizontal displacement.

$$
x(0)=30 \mathrm{~cm} \quad x(5 T)=_\quad x(10 T)=_\quad x(15 T)=\quad x(20 T)=
$$

Dampened pendulum motion is modeled by $x(t)=A e^{-k t} \sin (b t+c)$. We want to find ' k ' 2 ways.
8) Use $x(0)$ and $x(5 T)$ to compute 'k' algebraically. You must show your work.
9) Use all 5 data points and run exponential regression to find ' k '. From TI regression: $y=a b^{\wedge} x$ Use change of bases to find ' k '. Solve $\mathrm{b}^{\mathrm{x}} \rightarrow \mathrm{e}^{-\mathrm{kx}}$ for k . You must show your work. Hint: Take \ln of both sides.

