

Summary of Trig Relationships
Non-trig Relationships using Slope, m

$$
m=\frac{y}{x} \quad x^{2}+y^{2}=r^{2} \quad x=\frac{r}{\sqrt{1+m^{2}}} \quad y=\frac{r m}{\sqrt{1+\mathrm{m}^{2}}}
$$

Arc Length and Velocity

$\begin{array}{lllll}\mathrm{a}=\mathrm{r} \theta & (\theta \text { in radians }) & \mathrm{a}=\frac{\theta^{\circ}}{360^{\circ}} 2 \pi r & (\theta \text { in degrees }) & 2 \pi_{\mathrm{rad}}=360^{\circ} \\ \mathrm{v}=\mathrm{r} \omega & (\theta \text { in radians }) & \text { e.g. }(\mathrm{ft} / \mathrm{sec}=\mathrm{ft} \times \mathrm{rad} / \mathrm{sec})\end{array}$

Trig Relationships

y

Standard Diagram

Given a right triangle when θ is known use these trig relationships to find a missing side

$$
\begin{aligned}
& \sin \theta=\frac{y}{r}=\frac{\text { opp }}{\text { hyp }} \\
& \cos \theta=\frac{x}{r}=\frac{\text { adj }}{\text { hyp }}
\end{aligned}
$$

$$
\begin{array}{ccc}
x=r \cos \theta & \mathrm{y}=\mathrm{r} \sin \theta & \theta+\alpha=90^{\circ}=\pi / 2_{\mathrm{rad}} \\
\tan \theta=\mathrm{m} & \theta=\tan ^{-1} \mathrm{~m} & \sin \theta=\cos \alpha
\end{array}
$$

$$
\tan \theta=\frac{\mathrm{y}}{\mathrm{x}}=\frac{\mathrm{opp}}{\mathrm{adj}}
$$

Given a right triangle when θ is not known
use these trig relationships to find an angle
$45^{\circ}=\pi / 4 \quad 180^{\circ}=\pi$
$60^{\circ}=\pi / 6$
$\theta=\sin ^{-1}\left(\frac{\mathrm{y}}{\mathrm{r}}\right)=\sin ^{-1}\left(\frac{\mathrm{opp}}{\mathrm{hyp}}\right)$

$$
\theta=\cos ^{-1}\left(\frac{x}{r}\right)=\cos ^{-1}\left(\frac{\text { adj }}{\text { hyp }}\right)
$$

$$
\theta=\tan ^{-1}\left(\frac{y}{x}\right)=\tan ^{-1}\left(\frac{\mathrm{opp}}{\mathrm{adj}}\right)
$$

$\cos \theta=\sin \alpha$

Some Examples that do NOT require Trigonometry

Not every triangle requires trigonometry.

Don't forget to use similar triangles where possible.
Don't forget there are 180° in every triangle.

Use Similar Triangles

Reflected Triangles, $\mathrm{P} \| \mathrm{Q}$
Use Similar Triangles

> Two Angles Match
> Use 180° in triangles Use Similar Triangles

Both legs known, slope missing

$$
\text { Use } m=\frac{\text { rise }}{\text { run }}
$$

Mitered Right Triangles
Use Similar Triangles Use Pythagorean Thm.

A right triangle with 2 sides known, one side missing

Use Pythagorean Thm.

Imbedded Right Triangles
Use Similar Triangles
Use Pythagorean Thm.

Slope and one leg known, other leg missing

$$
\text { Use } m=\frac{\text { rise }}{\text { run }}
$$

Slope and diagonal known, legs missing

$$
\text { Use } \quad x=\frac{z}{\sqrt{1+m^{2}}} ; \quad y=\frac{z m}{\sqrt{1+m^{2}}}
$$

The tangent is used when

There is a right triangle
The parts of interest are:
an angle,
both legs,
the slope

one angle and one leg known, other leg missing

$$
\text { Use } \tan \theta=o p p / a d j
$$

Slope known, Standard angle missing

Both legs known, angles missing

Standard angle known, slope missing

Use $\tan \theta=m$

The sine is used when
There is a right triangle
The parts of interest are:
an angle,
its opposite leg,
the diagonal

Angle, opposite leg known, hypotenuse missing

Angle, hypotenuse known, leg opposite angle missing

Use $\sin \theta=o p p / h y p$

Use $\sin \theta=o p p / h y p$

Angle, adjacent leg known, hypotenuse missing

Angle, hypotenuse known, adjacent leg missing

Use $\cos \theta=a d j / h y p$

Hypotenuse, leg known; angle opposite leg missing

Use $\theta=\sin ^{-1}$ (opp/hyp)

The cosine is used when
There is a right triangle
The parts of interest are: an angle,
its adjacent leg,
the diagonal

Use $\cos \theta=$ adj/hyp

When extra information is known there are multiple possibilities.

A right triangle with all sides known but angles missing
Use any inverse trig function

Use Law of Sines with
2 angles +2 sides with one part missing.
Often must first use sum of angles is 180°.

Law of Sines

$$
\frac{\sin a}{A}=\frac{\sin b}{B}=\frac{\sin c}{C}
$$

3 sides known and missing angles or side-angle-side combo known with side opposite angle missing

Law of Cosines

$$
\begin{gathered}
\mathrm{A}^{2}+\mathrm{B}^{2}-2 \mathrm{AB} \cos \theta=\mathrm{C}^{2} \\
\cos \theta=\frac{\mathrm{A}^{2}+\mathrm{B}^{2}-\mathrm{C}^{2}}{2 \mathrm{AB}}
\end{gathered}
$$

Examples

| 3
 Use Law of Cosines to find first angle
 Many choices after that |
| :---: | :---: | :---: |
| side-angle-side combo known |
| Use Law of Cosines to find third side |

Summary of Basic Trigonometry:

Using Trigonometry in a geometry problem involves triangles. The triangle(s) may be obvious but sometimes they are imbedded deceptively within a more complicated geometry. Generally, the task at hand is to use partial information given about the various triangles to determine all three angles (A) and all three sides (S) of each triangle.

Given only SSS, SAS, ASA, AAS we always have a unique triangle. Thus, the remaining three parts of the triangle are predetermined. In each of the examples below the remaining three parts (?) can be found using trigonometry formulas.

			AAS

However, if given SSA two possible triangles can occur but only two. Trigonometry can still give us the unknown parts exactly if we know which of the two cases we have, an acute triangle or an obtuse triangle.

If we have just the three angles known there are an infinite number of similar triangles. Thus, we must always have at least one side given to exactly determine all parts.

With the exception of AAA (similar triangles) knowing three of the six triangle parts allows us to find the remaining three parts (assuming we have a sketch for the SSA case).

In the case of right triangles, one angle (the right angle) is already known so we only need two additional parts to exactly determine all six parts. Right triangles are usually preferable because the relationships are simpler to work with.

Not every triangle requires trigonometry to determine its components. Often a triangle is oriented so that "slope" makes sense for one "angle" of the triangle. If a slope is given (or desired) we can often avoid trigonometry and still determine all the remaining parts of the triangle.

In Trigonometry Applications:

1) Find triangles inherent and useful to the problem. Label them.
2) Decide if a triangle is a right-triangle or non-right-triangle.
3) Determine which relation is required.
4) Use the relationship to set up an equation.
5) Solve the equation
6) Repeat as necessary

Only right triangles can use the Pythagorean Theorem.
Recall there are $\mathbf{1 8 0}^{\circ}$ in a triangle and complementary angles sum to 90°.
Use Sin, Cos or Tan with right triangles when the angle is known.
Use $\mathbf{S i n}^{-1}, \operatorname{Cos}^{-1}$ or $\mathbf{T a n}^{-1}$ with right triangles when the angle is the unknown.
When two sides form a " \mathbf{t} " use Tan or Tan ${ }^{-1}$.
Right-triangles which involve the hypotenuse and an angle use either Sin or Cos.
Right-triangles which involve two sides bracketing an angle use Cos.
Right-triangles which involve the hypotenuse and a side opposite an angle use Sin.
Non-right triangles use Law of Sines or Law of Cosines.
When a right triangle is in its standard position the various relationships are easier to recognize and apply.

standard position with slope

When a right triangle is in a random position be careful when using the trigonometric relationships.

$$
\begin{array}{cc}
m=\frac{a}{b} ; \quad a^{2}+b^{2}=c^{2} ; & b=\frac{c}{\sqrt{1+m^{2}}} ; \quad a=\frac{c m}{\sqrt{1+m^{2}}} \\
\tan \theta=\frac{\text { rise }}{\text { run }} ; & \sin \theta=\frac{\text { rise }}{\text { hyp }} ; \quad \cos \theta=\frac{\text { run }}{\text { hyp }} \\
a=c \sin \theta & \\
b=c \cos \theta
\end{array}
$$

be careful using slope here
$\mathrm{m}=\tan \theta=\frac{\mathrm{a}}{\mathrm{b}}$
$\theta=\tan ^{-1} \frac{\mathrm{opp}}{\mathrm{adj}}=\tan ^{-1} \frac{\mathrm{a}}{\mathrm{b}}$

$$
\theta=\sin ^{-1} \frac{\mathrm{opp}}{\mathrm{hyp}} ; \theta=\cos ^{-1} \frac{\mathrm{adj}}{\mathrm{hyp}}
$$

slope is inapplicable here

$$
\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}=\frac{\mathrm{b}}{\mathrm{a}}
$$

$$
\sin \theta=\frac{o p p}{\text { hyp }}=\frac{b}{c}
$$

$\cos \theta=\frac{\text { adj }}{\text { hyp }}=\frac{\text { a }}{c}$

Procedure Summary:

The triangle is a Right Triangle

If two sides are known, find the third side by using the Pythagorean Theorem.

If one complementary angle is known find the other using complements sum to 90°.

If two sides are known find an angle with:

$$
\theta=\sin ^{-1} \frac{\mathrm{opp}}{\mathrm{hyp}}, \theta=\cos ^{-1} \frac{\mathrm{adj}}{\mathrm{hyp}}, \theta=\tan ^{-1} \frac{\mathrm{opp}}{\mathrm{adj}} .
$$

If one angle and one side are known find another side using:

$$
\sin (\theta)=\frac{\mathrm{opp}}{\mathrm{hyp}}, \cos (\theta)=\frac{\mathrm{adj}}{\mathrm{hyp}}, \tan (\theta)=\frac{\mathrm{opp}}{\mathrm{adj}}
$$

The triangle is NOT a Right Triangle

If three parts of three sides and one angle are known use Law of Cosines to find the fourth part.

$$
\begin{gathered}
\mathrm{A}^{2}+\mathrm{B}^{2}-2 \mathrm{AB} \cos (\theta)=\mathrm{C}^{2} \\
\cos (\theta)=\frac{\mathrm{A}^{2}+\mathrm{B}^{2}-\mathrm{C}^{2}}{2 \mathrm{AB}}
\end{gathered}
$$

If three parts of two sides and two angles are known use Law of Sines to find the fourth part.

$$
\frac{\sin a}{A}=\frac{\sin b}{B}=\frac{\sin c}{C}
$$

Examples

		Two Angles Match. Use 180° in triangles Use Similar Triangles	Mitered Right Triangles Use Similar Triangles Use Pythagorean Thm.
Reference Triangle	3 Sides, Angles Missing Use Law of Cosines to find angles	2 Side-Angle Combos Use Law of Sines to find a Many choices after that	Side-Angle-Side Use Law of Cosines to find third side
Angle- Angle-Side Use 180° in triangle Use Law of Sines to find sides	Angle-Side-Angle Use 180° in triangle Use Law of Sines to find sides	Be careful when using Law of	$?$ Sines with Obtuse Triangles!

